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A theoretical investigation is presented of the electrohydrostatic stability of a 
given volume of incompressible dielectric fluid when stressed by the application 
of a potential difference between bounding conducting fluids. It is assumed that 
the dielectric fluid is located in a channel of breadt.h 2a and height 2h, with 
hfa < 1, whose walls are semi-infinite solid dielectric sheets of thickness 2h. The 
dielectric fluid may have a volume which differs from that of the channel, so that 
the presence of menisci a t  the interfaces between conducting and non-conducting 
fluids is taken into account. By a suitable method for approximating the electric 
stress at  the interfaces, the electrostatic potential difference across the dielectric 
is determined as a function of the pressure difference across the interfaces for 
prescribed values of the discrepancy of the volume of the dielectric from the 
volume of the channel per unit length, and criteria are obtained for determining 
the critical electric field which precipitates the instability of the system. The 
variation of the critical electric field with the dimensionless volume excess 
26 is also found and it is shown that, for 6 < - 0.5, instability is associated with 
a symmetric mode of disturbance in which the critical field occurs at  the maxi- 
mum in a plot of potential difference 0s. pressure difference. For 6 > -0.5, 
instability arises from an asymmetric disturbance with the critical field occurring 
at a bifurcation point in the potential differencelpressure difference plane. 
Bifurcations are shown to occur only when the equilibrium profiles of the inter- 
faces have extrema at the edges of the channel. 

1. Introduction 
The failure of the insulation of a dielectric fluid between electrified bodies, due 

to the mechanical instability of the fluid produced by the electrical stresses, has 
recently been the subject of a number of studies. Taylor & McEwan (1965) 
demonstrated such effects, produced under the influence of gravity by an 
electrified plate placed above a horizontal conducting free surface. Taylor (1968) 
gave an experimental and theoretical study of the instability of neighbouring 
soap film membranes when mounted on two circular rings, and Ackerberg (1969) 
undertook further mathematical analysis of this problem as formulated by 
Taylor. In  experiments to verify the linear theory of waves on a conducting 
cylindrical column Taylor (1969) studied the bursting of a cylindrical membrane 
when stressed by a radial electric field. Studies of the waves on an electrified 
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FIGURE 1. Schematic diagram of Zuercher’s experiments. 

conducting jet have been made by many authors, such as Bassett (1894), 
Rayleigh (1879)) Melcher (1963) and Crowley (1965). The application of the 
theory of such waves to the instability of the cylindrical membrane in Taylor’s 
experiments was made by Taylor (1969) and Michael & O’Neill (1972a)) and 
good agreement with experimental results was obtained. Two-dimensional 
studies of the instability of neighbouring electrified conducting surfaces were 
given by Michael & O’Neill (1972 b).  

The motivation and starting point for the further study presented in this paper 
is the investigation of Michael, O’Neill & Zuercher (1971), hereafter referred to 
as MONZ, in which an experimental and theoretical study was made of the 
breakdown of the insulation of a fluid dielectric contained in a circular hole in 
a sheet of solid dielectric. The geometry of these experiments conducted by 
Zuercher is reproduced in figure 1. A right circular hole in a Perspex plate was 
filled with a dielectric fluid and was enclosed above and below by two layers of 
water across which a potential difference was applied. The dielectric fluid in the 
hole was made neutrally buoyant so that the effect of gravity did not enter the 
problem. Observations of the potential difference a t  which the fluid insulation 
becomes unstable were made for a number of holes of different radius-to-depth 
ratio. Agreement between the results of these experiments and the mathematical 
analysis was good, but small discrepancies in the results could be explained by 
the difficulty in controlling exactly the conditions of the experiment. I n  parti- 
cular, it was difficult to ensure that the volume of dielectric fluid used was 
exactly the right amount to fill the hole and it was suggested that, small 
divergences between observational results and theoretical predictions could be 
accounted for by small discrepancies in the volume of fluid filling the hole. These 
considerations have prompted the present authors to consider whether the 
mathematical analysis given in MONZ can be advanced to include calculations 
of the instability when the hole i s  not exactly filled. 

I n  the absence of any gravitational effects, when the hoIe is underfilled or 
overfilled the upper and lower surfaces will be symmetric about the centre-plane, 
and when there is no applied field they will evidently be spherical if the effect of 
the menisci is taken into account. When an electric field is applied across the hole 
it becomes a matter of considerable difficulty to calculate the shape of the inter- 
faces. Such a specification can be given in general only in numerical terms, and, if 
the problem is conceived in this way, i t  follows that calculation of the instability 
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can be effected only in numerical form. However, the problem can be advanced 
theoretically in a more satisfactory way when the hole radius is large in relation 
to its depth by making use of the approximation given by Taylor ( 1 9 6 8 )  in his 
study of the instability of electrified soap films suspended on two similarly 
situated circular rings. Denoting the distance between the rings by 2h, the radius 
of the rings by a,  and the radius of curvature of the membranes in the absence of 
an electric field by R, Taylor considered the situation in which h < a < R, and 
he demonstrated that very good agreement with experiment can be obtained by 
approximating the field strength by the field between parallel planes separated 
by the local separation of the membranes. This formulation leads to the two- 
point boundary-value problem in which the profile of the membrane sat’isfies 
the equations 

d2y I dy P 
dx2 xdx Y 2  -+-- = a+- ( y  2 O ) , \  

Here x is made dimensionless on the scale a, y is dimensionless on the scale h, and 
a = 2a2/Rh and ,8 = RV,2a2/16~Th3 are two constants which represent, in 
dimensionless form, respectively, the defect in the static pressure in between the 
two membranes compared with the pressure outside, and the level of the potential 
difference 3V, applied between the membranes. T is the one-sided surface tension 
and R the dielectric constant of the medium between the membranes. 

We may apply the formulation ( I )  also to Zuercher’s experiments when the 
hole radius is large compared with the depth if we replace T by $T since the 
surfaces under stress are not now membranes, but the form of solution in this 
case is different. I n  Taylor’s work it was assumed that a change in the equilibrium 
configuration of the membranes occurs with the application of the field under 
conditions in which the pressure difference, measured by a,  remains invariant. 
The obvious instance of this is when the rings are open-sided, with 01 = 0, which 
was the condition of Taylor’s experiments. Thus solutions of ( 1 )  were sought by 
Taylor and Ackerberg a t  constant a, and transition to instability was found a t  
a, maximum value of /3 subject t o  this condition. When an incompressible 
dielectric fluid fills a circular hole with closed sides, the solution of the mathe- 
matical problem (1) must take a different form. Clearly in this case the change 
in the equilibrium configuration with the application of an electric field must 
be accompanied by a change in pressure in such a way that the volume of fluid 
occupying the hole remains constant. The requirement in this case is therefore to 
obtain solutions of (1) in which a and ,8 vary in such a way as to maintain the 
volume of fluid constant. The most convenient way of representing such solutions 
is to plot the locus of (a,p) in the a, ,8 plane for each prescribed volume fraction. 

It may be noted here that constant-volume conditions are not confined to liquid 
insulators. In  the experiments of Taylor (19G9), for example, i t  was demonstrated 
that  the bursting by electrification of a cylindrical membrane enclosing an air 
column which is closed a t  the ends takes place through incompressible modes of 
instability. I n  such cases the level of the surface stresses produced by electrifica- 
tion in the critical state is too low to have any appreciable effect in expanding or 
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compressing the enclosed air. Thus a simple counterpart of the conditions of 
Zuercher’s experiments could be realized by an arrangement in which a box is 
constructed with insulating sides and conducting plane surfaces above and below 
in which two circular holes are made centrally. With two soap film membranes 
spread over the holes to enclose the air in the box and a means of setting the 
pressure inside to vary the volume of air in the box, the conditions of Zuercher’s 
experiment can be simulated. 

In  seeking to connect the results of an analysis of this kind with the results of 
the small perturbation analysis in MONZ several points need elucidation. In  the 
first place the analysis in MONZ was given in two parts, an approximate and an 
exact theory, the approximate theory being one in which the conditions at the 
side of the hole are not exactly satisfied. The difference between the results of 
these two theories diminishes as the hole radius gets larger. It is to be expected 
that the Taylor analysis will be valid in the limit of very large holes, and i t  is 
therefore appropriate to make comparisons with the results of the approximate 
theory, which are given in a simple explicit form. A second point arising in the 
comparison is that in MONZ two forms of unstable modes were shown to be 
relevant, sausage and kink modes, these being respectively small perturbations 
of the hole surface symmetric and antisymmetric about the centre-plane. The 
Taylor formulation has been given only for sausage-type equilibria which are 
also symmetric about the axis of the hole. It may be asked whether there is any 
counterpart to kink modes in the Taylor formulation. Such modes imply equi- 
libria which are not symmetric about the centre-plane and it can easily be seen 
that they cannot occur. For, if we denote the two surfaces, which may now be of 
arbitrary (axisymmetric) shape, by yl(x) and y2(x) the equations for axisym- 
metric equilibria may be written as 

1 441 4P 
ax2 x ax ( ~ 2  - ~ 1 ) ~ ’  

dyl/dx = dyz/dx = 0 a t  x = 0; y1 = 0, y2 = 3 a t  x = 1. 

I f f  = y1 +y2 and ’1 = y2 - yl, it  follows, by adding the equations, that = 2h, and 
hence that y1 = h - +r and ys = h + $7. Therefore no kink-type solutions sym- 
metric about the axis will exist. The result is unaltered for modes which are not 
axisymmetric, because in this case we require 

with 

to satisfy Laplace’s equation 

with f = 2h a t  x = 1 for all values of the polar angle 8. Hence again 6 = 2h. Thus 
the Taylor form of analysis can only be associated with sausage mode displace- 
ments because the electrical stress at  corresponding points on the upper and 
lower surfaces is the same, so that the curvature of the surfaces must have the 
same value with opposite sign at  these points. This is compatible with the 
sausage modes of MONZ, where the normal field is even about the mid-plane, 
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giving equal stresses on both surfaces, whereas in the kink modes the values of 
the perturbation normal stresses a t  the two surfaces are equal and opposite, 
giving different first-order stresses a t  the two surfaces. This connexion between 
the two theories is also confirmed by the form of the dispersion relationship for 
neut'rally stable waves given in MONZ. It was shown that the relationship is 

RE: = 4nkT tanh Rh, for sausage modes, (2 a)  

KE; = 4nkT coth Rh, for kink modes, (2 b )  
where E, = V,/h is the unperturbed field strength and k is the wavenumber. The 
Taylor analysis corresponds to the case where kh-t 0, when (2 u)  gives rise to 
a finite limit k2a2 for 2/3 = KV;a2/4nTh3. (In MONZ the symbol R was used 
instead of a and it was seen that kR could take finite and discrete values.) I n  
( 2  b)  it is easily seen that there is no finite limit for @. 

The primary interest in both forms of the theory is to find the mode of break- 
down which has the lowest level of applied potential V,. I n  the MONZ analysis 
of a fully filled hole it was shown that for small holes this mode is an axisymmetric 
kink mode, and for a large hole it is a non-axisymmetric sausage mode. From the 
foregoing discussion we should expect to be able to  apply the Taylor form of 
analysis to obtain the lowest mode for partially filled large holes, but a complica- 
tion arises because by implication from the MONZ result it is to be expected that 
this will be a non-axisymmetric mode. The equations for non-axisymmetric 
equilibrium using the Taylor formulation will give rise to the boundary-value 
problem, which follows by extension from (1); 

with y =  1 when x =  1 for 0 < O <  2n.j 

Non-axisymmetric solutions of this boundary-value problem are difficult to  
obtain, and in order to examine the connexion between axisymmetric and non- 
axisymmetric solutions in a slightly easier context, it was decided to make a study 
in the first place of the corresponding two-dimensional problem in which the hole 
becomes a rectangular channel. This problem has the advantage of not intro- 
ducing a second independent variable for asymmetric modes. Also, the counter- 
part of the Taylor theory for constant a in the two-dimensional problem has 
already been given by Michael & O'Neill ( 1972 b ) ,  and it has the further advantage 
of giving solutions in terms of tabulated elliptic integrals. 

Our discussion of the problem will therefore be presented in two parts. The 
first part, which takes up the remainder of this paper, gives a complete account 
of the counterparts of the MONZ and Taylor theories in the two-dimensional 
case, where a comprehensive analytical approach to the problem aJlows the 
connexion between the two theories for large holes filled with incompressible 
non-conducting fluid to be made clear. I n  a second paper we shall give an 
account of the results which are obtainable for a circular hole using the Taylor 
theory and the connexion between these results and those of the theory given 
previously in MONZ. Here, for the most part, a numerical study of the problem 
has had to be carried out. 
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2. Small perturbation theory for a two-dimensional hole 
We begin our analysis of the breakdown of stability in a two-dimensional hole 

by formulating the counterpart of the linear theory given in MONZ for a circular 
hole. 

Insulating fluid now fills an infinitely long channel of depth 2h and width 2a 
bounded by semi-infinite sheets of solid dielectric. There are plane interfaces a t  
y = 5 h, 1x1 < a ,  between the insulating fluid and conducting fluid above and 
below the sheets. If <(x) denotes the y displacement of the interface for neutrally 
stable small two-dimensional disturbances, we distinguish between sausa.ge and 
kink modes, in which <(h) = - <( - h) and <(h) = + <( - h) respectively. It is 
assumed that  the edges of the channel 1x1 = a, y = -t h are sharp. I n  this case 
with the insulating fluid wetting the sides of the channel up to the edges, t’he fluid 
surface will be suspended from the sharp edges a t  an angle of inclination which 
may take any value depending on the volume of the insulating fluid. Thus [ = 0 
a t  the two ends of the interfaces a t  x = a. As a counterpart of axisymmetric 
and non-axisymmetric modes for a circular hole we also distinguish between 
modes in which < is symmetric or antisymmetric about the y axis. For 
antisymmetric modes <,K sink,x, where k, = nr /a ,  n = 1 , 2 , 3 ,  ..., and for 
symmetric modes <, cc cos k,x, with k, = (n + +) n/a. The electrostatic potential 
rc. of the perturbation satisfies Laplace’s equation and the boundary conditions 
x + EoC = 0 a t  y = h, where E, is the applied field in the y direction across 
the hole. I n  a simplified theory, in which x is made zero a t  1x1 = a, the field in 
the hole is not coupled to  the field outside it, and for anti-symmetric sausage 
modes, x will have the form x,, where 

with 

X, = A,sinhk,ysink,x, 

A, = -E,<,/sinhk,h. 

The normal stress condition a t  y = h then gives 

so that 

where K is the dielectric constant of the fluid in the hole and T is the surface 
tension. The lowest field strength E, which will give instability is given from (4) 
by the lowest value of k,, i.e. lc, = r / a ;  this we shall refer to as the S1 mode. I n  
the case of kink modes, in which x is an even function of y, t,he dispersion relation 
corresponding to (4) is now 

KE; h/4rT = k, h tanh E ,  h, (4 

KE; h/4rT = k, h Goth k, h. ( 5 )  

For a given value of k,, the sausage mode instability always appears a t  a lower 
value of E,, but the symmetric sausage modes cannot appear because they 
each result in a change in the volume of fluid filling the hole. Hence S1 is the 
first sausage mode of instability. Symmetric kink modes can occur with 
k, = (n + g )  ria, and the lowest kink mode, which we denote by hrO, is obtained 
from ( 5 )  with k, = n/2a. For small hla, the sausage mode S1 becomes unstable 
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first with increasing E,, while for large h/a, the kink mode KOis the most unstable. 
The transition in unstable modes occurs when h/a FZ 0-5. 

These conclusions are based on the assumption that, in the state of marginal 
stability, no change in static pressure inside the fluid dielectric occurs relative 
to the outer conducting fluids. It is of interest to note in connexion with the 
Taylor approximations given later that  a relaxation of this condition can give 
rise t.0 a form of symmetric sausage mode. An account of such modes for a circular 
hole is given by Michael & O'Neill in an appendix to part 2 of this work. I n  the 
plane geometry an approximate representation of such a symmetric mode may 
be obtained by writing 5 = A(cos kx - cos ka), where A is a small amplitude. This 
will satisfy the condition f; = 0 at 1x1 = a. The constant-volume condition 
necessary for a sausage mode, which is 

requires that tan ka = ka. The lowest value of k occurs when ka = 4.49. For such 
a mode we have an electrostatic potential of the form 

sinh ky [ sinhkh 
x = - A  Eo- 

and it may be seen that the extra term in (6) gives rise to an extra constant term 
in the first-order electric stress a t  y = h, which is now 

The dispersion relation (4) follows as previously, using the first term. The second 
term illustrates that such a mode can a,rise only when there is a small first-order 
increase Sp in the static pressure inside the channel, this being given by 

( 7 )  

The crit'ical value of E, predicted by this approximation is given by (4) with 
ka = 4.49. For a given channel, this is higher than the value for an Sl mode, in 
which ka = T. Provided that these represent good approximations, this sym- 
metric sausage mode should not enter into any correlation of theory with experi- 
mental observations of instability. A reservation concerning this mode is that  
from ( 6 )  it does not satisfy the condition x = 0 a t  1x1 = a, I yI < h as do previous 
modes. However, in the limiting case kh+ 0, which connects up with the Taylor 
approximation, this Condition is then satisfied. 

We can also consider an approximation to a kink mode with this form of 6, in 
this case without restriction on the value of k .  The potential x now has the form 

Sp = - (KE;A/&rh) cos ka. 

cosh ky f coshkh 
x = - d E ,  coskX-- 

The additional term in xis a constant, and gives no additional stress, no change 
in static pressure and no change in the dispersion relation. Again, this form of 
solution does not make x = 0 when 1x1 = a, / y /  < h, except in the limit kh+O. 
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In  so far as both these approximate solutions are unable to satisfy continuity 
conditions at the sides 1x1 = a, IyJ < h, they cannot be expected to give accurate 
values for the critical field E,. But they are of value in showing that changes in 
internal pressure are associated with symmetric sausage modes, but not with 
symmetric kink modes. A full solution for these modes incorporating continuity 
conditions a t  the sides has been given by Miss A. E. Latham (1973, private 
communication) and will not be pursued further here. 

A final point concerning this form of analysis is that we have assumed a two- 
dimensional form of perturbation in which 6 and x are independent of the 
co-ordinate z along the channel. It can easily be seen that a simple form of 
Squires’ theorem applies in this case in the sense that, if 6 is taken to be of the 
form < = $2 kx$&mz, the critical field strengths are given by either (4) or (5) 
with k replaced by the larger value (k2+m2)*. Since the critical values of E, 
increase with increasing k we conclude that a two-dimensional form of dis- 
turbance will yield the first point of instability. This is confirmed by the work of 
Miss A. E. Latham when k/a g 1. It has also been demonstrated both experi- 
mentally and theoretically that the two-dimensional axisymmetric disturbance 
is more unstable than a three-dimensional disturbance in the analogous problem 
of the bursting of a charged cylindrical film. The experimental work of 
Taylor (1969) and the subsequent theoretical work of Michael & O’Neill 
( 1 9 7 2 ~ )  show that, for long films, it is the two-dimensional varicose mode 
which first becomes unstable. 

The analysis described in this section pertains only to the case of a fully filled 
channel, for which the volume excess 6 = 0. By continuity it is clear that when 
6 4 0 the system will first become unstable through a two-dimensional disturb- 
ance if 161 is sufficiently small. In  fact i t  can be easily verified that this 
must also be the case for any 6 when the conditions for the validity of the 
Taylor formulation of the problem, set out in the previous section, are met, 
since the first-order change in the surface-tension stress is then always of the 
form T(a2c/:laz2 + a2</az2) and the conclusion follows as in the case 6 = 0. 

3. Sausage mode instabilityifor large holes 
In  the case of a plane-channel hole it is now appropriate to write the boundary- 

value problem (3) as 
azY a Z y  P 
ax2 az2 Y2’ 
-+- = a+- y(x) >, 0, 

with y = + 1 a t  1x1 = 1 for all z. The small perturbation analysis of the previous 
section has shown that for a fully filled hole the most unstable displacements will 
be two-dimensional in the sense that they are independent of z. This will also 
be true for partially filled plane holes, in which case the problem reduces to a 
search for equilibria y(x) satisfying the conditions 

d2y/dx2 = a +Ply2 (y >, O ) ,  
y = 1 when 1x1 = 1. 
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I n  this case a = a2/hR and ,8 = K V i a 2 / 8 ~ T h ~ .  This boundary-value problem has 
been studied previously by Michael & O'Neill (1972b), under the assumption 
that a is constant. Here we seek solutions in which the volume of fluid occupying 
the hole is constant. This we measure by defining the excess of fluid occupying 
the hole as 26, where 

6 = / ' ' ( y - l ) d x  - 1  

in dimensionless form. Equation (8) has the advantage compared with ( 1 )  of 
having elliptic integral solutions in tabulated form. It also has a first integral of 
the form (dy/dx)2 = f ( y ) ,  which is of great advantage in yielding a simple 
criterion for the bifurcation of the solutions which enables us to ascertain points 
where the stability changes. Our primary objective in this work is to obtain the 
locus of points in the a, ,8 plane for which solutions of (8) have a prescribed value 
of 6. 

For the purposes of numerical calculation it is useful to remove one of the 
parameters from (8). 

If a > 0, we write y = ,8/a > 0 and x1 = a4x. Dropping the suffix we then have 

d2y/dx2 = 1 +y/y2, with y = 1 at 1x1 = at. 

A first integral is &(dy/dx)2 = K + y - y /y ,  where K is a constant. Real solutions of 
the boundary-value problem must have dyldx = 0 a t  least once in the interval. 
Here dy/dx = 0 where y2 + KY - y = 0, which we write as ( y  - b )  ( y  - c )  = 0, with 
bc = - y < 0 and b + c = - K .  Taking b > 0, the solutions thus have a single 
minimum when y = b for 1x1 < a*. It also follows from the form of (8) that the 
solutions y ( x )  are symmetric about the ordinate at a stationary point of y(x) .  
Thus, the minimum value of y (x )  must occur at x = 0 and consequently only 
solutions of (8) which are even functions of x are possible when a > 0. 

If a < 0, we write y = - ,8/a > 0 and x1 = ( - a ) t x .  We now have 

d'y/dx2 = - 1 +y/y2, 

with $(dy/dx)2 = K - Y - ~ / Y  = y- l (b-y) (y -c) .  Now b+c = K and bc = y > 0. 
Assuming b > c, it follows that c < y ( x )  < b, and solutions will have a maximum 
a t  y = b and a minimum at y = c. Further, since y ( x )  2 0 in solutions of interest, 
and b and c have the same sign, we must have b > c > 0 in general. I n  this case 
it is clear that  solutions with any number of alternate maxima and minima may 
be obtained. 

As may be seen in later work described in this paper, the case a < 0 is of most 
interest, and we continue the analysis for this case. We note that, since dyldx = k 
a function of y ,  it follows that the solutions y ( x )  are periodic in x and since 
d2y/dx2 is a function of y2, any solution is symmetric about all ordinates through 
the maxima and minima. 

A basic half-wavelength $ A  of the solution occurs between y = b and y = c, as 
shown in figure 3. With y = 1 at the ends of the range, clearly b > 1 > c, and three 
basic solutions are given by the abscissa ranges AB, BC and AC, the latter being 
one wavelength. The entire set of solutions can be obtained by adding an integral 
number of complete wavelengths to each of these three basic solutions. A distinc- 
tion can be noted here between solutions which are symmetric (that is even 
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FIGURE 2. The solution of (8) when a < 0. The basic interfacial profiles are AB or BC for 
solutions symmetric (even) in z and A C  for asymmetric solutions. 

functions of x about the centre-plane x = 0 of the hole), and those which are 
asymmetric in this sense. Evidently, solutions represented by the profiles AB, BG 
and all profiles obtained from these by adding an integral number of whole wave- 
lengths to either will be symmetric profiles. Asymmetric profiles are represented 
by any integral number of whole wavelengths. 

We also note that, whereas for symmetric profiles the slopes a t  the two ends 
are of the form + m and - m, for asymmetric profiles they are equal. This leads 
to  a simple criterion, of importance later, for the points at which asymmetric 
solutions bifurcate from symmetric solutions. If the bifurcation is smooth this 
clearly requires that the slope of the profile a t  each end shall be zero. The volume 
conservation condition is conveniently expressed in the form 

with dxldy determined from the first integral of (8). This integral is in general an 
incomplete elliptic integral. But in the case of a complete wavelength solution AC 
it becomes a complete elliptic integral, and consequently, 

where E and F denote respectively the ellipt’ic integrals of the first and second 
kinds. We also have 

For the whole wavelength solution AC this may also be written as a complete 
elliptic integral and takes the form 

(12 )  3( -a)4 = 2(2b)+E(&T, ( 1  -c/b)B). 
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For the whole wavelength solution the curves S = constant in the a, P plane 
were obtained by the following procedure. Equation (10) may be rewritten, 
using (12) and considering 6 as prescribed, as follows: 

2 b + 2 ~ - 3 - # 6  = c~(~~i.,(i-c/b)B)/E(frn,(I-c/b)B). (13 )  

Values of b 2 S were set, and ( 1 3 )  was used, by interpolatioil from standard tables 
of complete elliptic integrals such as Abramovitz & Stegun (1965), to find corre- 
sponding values of c where 0 < c < 1. Thereafter, equation (12) yields the value 
of a, and Pis then obtained from the equation y = - p/a = bc. There is no solution 
when b < I. I n  the limiting cases when b = 1, the solution AB of figure 2 ceases 
to exist and the solutions BC and AC coalesce. This represents the bifurcation 
of symmetric and asymmetric solutions, which can occur for 6 < 0, and for which 
dyldx = 0 a t  the two ends of the range, as was remarked earlier. Also solutions 
can exist only when c < 1. Similar remarks apply to the limit in which c = 1, but 
clearly solutions will exist in this limit only for 6 > 0. This procedure enables us 
to obtain the whole wavelength loci, labelled A, in figures 3, 5 and 6. A simple 
connexion exists between the solutions for one wavelength h and those for any 
integral number of wavelengths. The solutions representing nh, n = 2,3 ,4 ,  . . . , 
each require for fixed y that the range of x be increased in the ratio n. Since this 
is represented by 1x1 < ( -a)+ and the integral for Sis unchanged, it follows that 
a and p are increased in the ratio n2. Hence, the loci for 2 4  3 4  4 4  . . ., follow from 
the h loci by scaling up a and p in the ratios 4, 9, S6, . . . , for any given 8. The 
symmetric loci, involving a non-integral number of wavelengths, are found by 
a similar procedure, using in this case tables of values of incomplete integrals 
such as Abramovitz & Stegun (1965). These calculations yield the loci labelled 
r ,  s, h + r ,  h + s, 2h + r ,  3h + s, etc. in figures 3 , 5  and 6, where as a convention for 
labelling the different solution profiles, we denote by r and s the profiles of the 
form AB and BC of figure 4. For the profile nh + r we reduce (9) and (1 1) to the 
following: 

- c [,zP is, rye)') + P (p, rTC)')] + b-4 [ (b  - 1) (1 - c)]S 

2( -a)* = 2(2b)4 

where the argument p of the elliptic integrals is given by sin-1 [ ( b  - l ) / ( b  - c ) ] t ,  
and n = 0, S ,  2 , .  .. . Corresponding equations for the profiles n h + s  can be 
derived from the above by noting that nA+s  = (n+ 1) A-r,  for n = 0, S , 2 , .  .. . 
Again we consider 6 as prescribed and consequently the above equations reduce 
to the following equat'ion, which is analogous to  ( 1 3 ) :  
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FIGURE 3. /l ws. u for the solutions of (8) when 6 = 0. The label nh relates to a profile of 
n complete wavelengths, nh + I  relates to a profile of type AB plus n complete wavelengths 
and nh + s relates to a profile of type BC plus n complete wavelengths. 

We solve these equations by setting values of b 2 1 and finding the correspond- 
ing values of c, where 0 < c < 1. The values of a and /3 are found as before, and 
the results are displayed in figures 5 and 6. 

Discussion of solutions 
Case 6 = 0. We begin our discussion of the solutions with the case 6 = 0, which 
is of particular interest because i t  is the case for which we already have instability 
criteria, obtained in $ 2  directly by a small perturbation analysis. Figure 3 shows 
the solutions of (8) in the - a, /? plane for 6 = 0. This consists of, first, the solution 
y(x) = 1, which results when a +/? = 0 and is represented by the straight line OL. 
Instability of this profile occurs at  points where other equilibria bifurcate from 
the straight line. These are obtained by small perturbations of (8). If (a,,Po) is 
a point on O L  a t  which a bifurcation occurs, let a = uo + A,, /? = Po +pl and 
y(x) = 1 + C,(x), where a, +Po = 0, and A,, p1 and Cl(x) are small perturbations. 
The first-order change in (8) yields the linear equation 

d2cl/dx2 +mzCl = A, +pl, where m2 = ZP,, 
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and we require C,(x) = 0 at 1x1 = 1. Since 

Cl(x) = (A,+pl)/mz+Alcosmx+Blsinmx, 

the boundary condition requires that B, sin m = 0. We take the two possibilities 
in turn. 

(i) If sinm = 0, the first non-zero solution is m = 7c. Then 

Cl = (A, +pl )  ( 2p0)-l ( 1 + cos 7cz) + B, sin 7cx. 

The conservation of volume requires that 

Cdx = 0) sr: 
so that A, +pl = 0 and C, = B, sin 7cx. This gives the first bifurcation from OL,  
occurring where 2p0 = - 2a0 = n2, at the point F in figure 3. To obtain the slope 
of the bifurcation a t  Fit is necessary to go to the second- and third-order terms, 
which can be obtained without difficulty. The second-order solution yields the 
results C2 = (/30/2n2) B~,(cos 2 7 ~ ~  + cos TX), 

A, = p, = 0, A,+p, = -$poB:, 

where the suffixes denote the appropriate orders of the terms. The third-order 
solution provides the values of A, and p, separately. We find that A, = &7cZB;3 
and p2 = - &r2B;3. Thus, the bifurcation occurs a t  the angle 0 with the - 01. axis, 
where 8 = tan-15, and is also one-sided and below the line OL. The fact that 
A, = p1 = 0 and the bifurcation only occurs below the line O L  can also be proved 
by expanding the elliptic integral form of the exact solution, which is given 
by (10) with 6 = 0, in the neighbourhood of the point F in figure 3. This is 
achieved by setting b = 1 + e  and c = 1-7. We then obtain 

1+2s-27=(1-7)P 

which, on using the expansion of the complete elliptic integrals for small E and 7, 
yields the result s = 8 + p + o(q ,  
giving - p / a = y = b c = 1 - 3 2  ,e + o w  < I ,  

from which the stated conclusions follow. 
(ii) When B, = 0, C, = (A, +pl)  ( 2pO)-l {I - cos mx/cos m} and the volume con- 

servation condition then requires that tanm = m. The first root of this equation 
is m z 4.49, which gives the bifurcation point G, where Po = -ao z 10.08. 
Second-order analysis in this case shows that 5A1 +pl = 0. I n  this case one of the 
first-order coefficients A, or p1 must be assigned to set the scale of the first-order 
solution and since the scaling can be reversed in sign, this suggests that  the 
symmetric bifurcation points on the line a + p = 0 for 6 = 0 are two-sided and 
consequently the loci of symmetric solutions can be continued above the line 
a + p = 0 in figure 3. The fact that bifurcation occurs above and below the line O L  
for profile types A + s and A + r respectively and the fact that A, =l= p1 + 0 although 
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the slope of the bifurcation curve is the same as in type (i) can be deduced by 
expanding the exact solution about the point G in figure 3 .  We again write 
b = 1 + E  and c = 1-7  in the equations for the profiles and expand the elliptic 
integrals up to second order in E and 7. Then, on considering -PIa = y = be, as 
in type (i), to see when y = 1 + e - 7  -€7 1, we find that E < 7 for the solution 
h + r ,  implying that y < I, so that this solution bifurcates from the line a +/3 = 0 
from below while for the solution h+s, E > 7, so that y > 1 and hence the 
bifurcation from a: + /3 = 0 occurs from above. 

Such bifurcation points however have no great physical significance as they 
do not determine the first onset of instability when 6 = 0, and we have not 
pursued the determination of the h + s curve above the line OL.  But the bifurca- 
tion branch GN in figure 3 corresponding to the h + r curve for which A, > 0 and 
p1 < 0 has been calculated and is included in the results displayed in figures 5 
and 6, since it is of value in correlating the loci for 6 = 0 with those for 6 + 0. 
The two bifurcations (i) and (ii) are the first two bifurcations on O L ,  and they 
correspond exactly to the sausage modes given by (4) in the limit of large holes, 
when kh+ 0, with ka = 7~ and 4-49 respectively. 

The loci of bifurcated solutions can be followed in the a, /3 plane by the direct 
calculation procedures previously described. I n  figure 3 they are continued down 
to the /3 = 0 axis. The limiting form of the solutions when /3+0 can easily be 
deduced. When /3 is small the last term in (8) will only become significant when 
y becomes very small. It follows that the limiting solutions are sections of 
parabolas satisfying the equation d2g/dx2 = a, one parabola joining with another 
only a t  a point of discontinuity of slope when y = 0. By applying the volume 
conservation condition in the limit we are able to obtain simply the value of a a t  
which these loci reach the axis /3 = 0 for any given 6. For example, the bifurcating 
curves at F and G for 6 = 0 reach the axis at M and N ,  where a = - 3 and - 6, 
respectively. F N  is clearly a line of asymmetric whole wavelength solutions, 
whilst GN represents symmetric solutions. The limiting solutions y ( x )  a t  ill and N 
are illustrated in figure 4. 

Case 6 + 0. The pattern of solutions in the a:, /3 plane for 6 = 0, apart from 
indicating that instability is associated with bifurcation in the a, /3 plane, does 
not advance our knowledge of the stability of fully filled large plane holes, 
because criteria for instability were obtained in $ 2  by direct perturbation 
methods. However, the former method may be followed through for cases in 
which S + 0, to yield stability criteria which could only be obtained by entirely 
numerical calculations of stability using the direct perturbation method of 3 2. 
I n  figures 5 and 6 we give results for the loci of equilibria for values of 6 less than 
and greater than zero, respectively, with the case S = 0 added in each figure for 
comparison purposes. 

For the limiting solutions as /3 -+ 0 simple calculations show that for asymmetric 
solutions of the form M, a = -$(6+2) ,  with the cusp occurring a t  the point 
xo, where xi = (36+ 2)/3(6+ 2) .  For symmetric solutions of the form N we find 
a = - 6( 1 + 6 ) .  For the value 6 = - $, x,, = 0, and M corresponds to a symmetric 
solution and coincides with N .  For 6 < - 3 no solut,ion of the form 17.1 exists. I n  
this case it can be seen that the point ill becomes a second bifurcation point occur- 
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FIGVRE 4. The limiting forms of the profiles for 6 = 0 as /I + 0 along the 
curves FA1 and GN of figure 3. 

ring for p > 0, a t  which the h solution line PM rejoins the symmetric solution 
h+r. 

The study of these solutions down to the limit p = 0 is of interest in estab- 
lishing the complete pattern of solutions to the mathematical problem posed. 
However, such solutions near p = 0 will not have any physical validity because 
the sharply varying slope near y = 0 violates the physical approximation on 
which the formulation of (8) is based. 

4. Breakdown of stable equilibria 
I n  the previous section detailed solutions were obtained for the equilibrium of 

partially filled two-dimensional large holes when electrically stressed, by use of 
the Taylor approximation. From a physical point of view we are interested in 
the stability of the equilibrium, and, in particular, the values of p a t  which stable 
equilibrium first fails as p is raised from zero. Starting from p = 0, the solutions 
r for S > 0, and s for S < 0 represent stable equilibria. As p is raised from zero, 
stability of the equilibrium for given 6 will fail either when a bifurcation point 
occurs or when the equilibrium locus attains a local maximum in /I. It can be 
seen in figures 5 and 6 that  both forms of failure can occur for different values 
of 6. When S = 0, the equilibrium first becomes unstable a t  the bifurcation point 
F of figure 3, where the instability is of the Sl type obtainable from the small 
perturbation analysis of $ 2 .  This type of failure occurs for all 6 > 0, and for all 
negative 6 down to  a critical value which by numerical methods we find to be 
about - 0-5. For values of 6 which are such that - + < S < - i, our results suggest 
that stable equilibrium remains until preaches a maximum, which occurs before 
a bifurcation, and that the stability fails a t  the maximum point. This happens 
for example when 6 = - 0.67, as illust,rated in figure 7. The lower limit to the 
range of permissible negative values of S is imposed by the requirement that 
y 2 0 in the absence of the electric field. The instability of the system represents 
in practice a rupture of the fluid insulation of the hole, and the two forms of 
instability represent different forms of rupture. The bifurcation-point instability 
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FIGURE 7 .  p vs. a for the solutions of (8) when 6 = 0, - 0.2, - 0.4 and - 0.67. 

271 represents an off-centre rupture of the dielectric fluid and is analogous to the 
form observed in the experiments of Zuercher for large circular holes, and has 
up to  now been the type of instability associated with large holes. The instability 
occurring a t  a maximum of /3 is symmetric and one in which the rupture occurs 
at the centre of the hole. Our results indicate that this latter type of instability 
never occurs when 6 2 0 but will occur for sufficiently large deficiencies in the 
volume of insulating fluid filling the hole. This may well be expected since in such 
cases the layer of fluid becomes increasingly thin a t  the centre as 6 decreases. 
I n  fact, when 6 = - 0.5,  the thickness of the layer a t  the centre in the absence of 
the field is 1.35h. 

The result of most practical interest is the variation of the critical value of p, 
denoted by /3*, a t  which instability first occurs, as a function of 6. For the range 
of values of 6 in which /3* occurs at a bifurcation in the a, ,8 plane, a direct repre- 
sentation of the critical point can be obtained. When 6 > 0, c = 1 a t  this point, 
and if a = a* and b = b* at this point, (13) and (13) become 

2( -a*)* = 2(2b*)*E(:j.r, (1 - l /b*)i)  

Bb" - 1-86 = P(4j.r) (1 - i/b*)*)/E(+j.r, (1 - I/b*)t) .  

( 14) 

(15) and 
20 F L M  66 
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FIGURE 8. A plot of /I*, the value of p in the marginal state of equilibrium, for varying 6. 
pma, denotes the maximum of the a, p locus for symmetric profiles, and Pbii denotes the 
value of /? at the f i s t  bifurcation of the symmetric and asymmetric loci. The critical value 
/?* = Pm,, for 6 < - 0.5 approximately, and /I* = for 6 > - 0.5. 

Equation (15) can be solved for b*. Hence a* is obtained from (14), and 
p* = - a*b*. The function $'(in, (1 - l/b*)*)/E(in, (1 - l /b*)*) increases mono- 
tonically from 1 to  + 00 logarithmically as b* increases from 1 to + 00. It follows 
from (15) that  for 6 > 0 there is just one such bifurcation point of solution r as 
illustrated in figure 5. 

When 6 < 0,  bifurcation of the solution 5 occurs where b = 1. Equation 
(15) is then replaced by 

2c* - 1 - 8s = c*$'(*n, (1 - c*)+)/E(*n, (1 - C*)*), (16) 

which is solved for c*, where 0 < c* < 1. It follows from (16) that when 
0 > 6 > - $ there is again only one solution for c*. When 6 = - 8 there is a solu- 
tion where $'(in, (1 - c*)h)/E(+n, (1 - c*)*) = 2, for which 0 < c* < 1. I n  addition 
c* = 0 is a solution giving /3* = 0. This is the limiting form of a second solution 
which occurs for values of S just less than - 8,  and is consistent with the behaviour 
remarked on earlier, that when 6 < - $ the points represented by M for S = 0 in 
figure 3 become bifurcat'ion points of the solutions h and h + s. 

At 6 = So, where - 0.69 > 6, > - 0.70, the points of bifurcation into s and A ,  
and h and A + r coalesce, and for 6 < 6, these bifurcations no longer exist. 
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FIGURE 9. KVE/n2Th w. h/a for fixed values of 8 when h/a is small. ---, determined from 
the exact solution of the linearizedperturbation equations when 8 = 0 by Miss A. E. Latham 
(1973 ; private communication) ; ~ , determined from the present theory. 

The determination of the values of p* occurring where /3 has a maximum value 
does not appear to yield to a simple direct analysis of the above type. Maximum 
points have been obtained in this case by direct evaluation of the s locus for 
values of 6 down to the lower limit 6 = -$ (where b* = 0) in the neighbourhood 
of maximum points. Numerical evaluation shows that the critical value of 6 a t  
which transition in p* from a maximum to a bifurcation type occurs is given by 
6" = - 0.5. The values of p* are plotted against 6 in figure 8. 

It is also of interest to correlate these results with those obtained from the small 
perturbation analysis of $ 2 ,  and figure 9 shows the critical values of 
A* = 27rhT/KV[ as a function of a/h when 6 = 0 for the X i  mode. Since 
A* = (4p*)-1(a/h)2, we are able to add parabolas obtained here for different 
values of 6 using the value p* corresponding to each 6. These curves will clearly 
provide a valid extension of the results of the analysis of $ 2  when h/a 4 1 and 
6* 0. 

20-2 
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5. Conclusion 
I n  the preceding sections we have demonstrated how the nature of the stability 

of a fixed volume of incompressible dielectric fluid, which fills a channel between 
solid dielectric sheets and which is stressed by an electric field applied between the 
interfaces of the dielectric fluid and conducting fluids, is elucidated by a study of 
t’he general problem when the channel is not exactly filled by the dielectric fluid. 

I n  the case when the width of the channel is large compared with its depth, we 
have shown how an asymmetric rupture of the dielectric fluid results when the 
curves of potential difference us. pressure difference across the interfaces for 
symmetric and asymmetric equilibrium profiles of the interfaces bifurcate. This 
is the mechanism for dielectric breakdown though electrocapillary instability 
except when the volume of the fluid is less than about half the volume of the 
channel per unit length, and in such cases, the rupture of the dielectric fluid 
occurs a t  the centre and the critical field then corresponds to  the maximum in 
t,he curve of potential difference us. pressure difference for symmetric equilibrium 
profiles. It has also been established that bifurcations only occur when the 
equilibrium profiles of the interfaces have extrema a t  the edges of the channel. 

The work described in this paper was completed while one of the authors 
(M. E. O’N.) was visiting the Department of Mathematics, University of Toronto, 
and he gratefully acknowledges support from the National Research Council of 
Canada. 
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