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A theoretical investigation is presented of the electrohydrostatic stability of a
given volume of incompressible dielectric fluid when stressed by the application
of a potential difference between bounding conducting fluids. It is assumed that
the dielectric fluid is located in a channel of breadth 2« and height 2k, with
hla < 1, whose walls are semi-infinite solid dielectric sheets of thickness 24. The
dielectric fluid may have a volume which differs from that of the channel, so that
the presence of menisci at the interfaces between conducting and non-conducting
fluids is taken into account. By a suitable method for approximating the electric
stress at the interfaces, the electrostatic potential difference across the dielectric
is determined as a function of the pressure difference across the interfaces for
prescribed values of the discrepancy of the volume of the dielectric from the
volume of the channel per unit length, and criteria are obtained for determining
the critical electric field which precipitates the instability of the system. The
variation of the critical electric field with the dimensionless volume excess
20 is also found and it is shown that, for § < — 0-5, instability is associated with
a symmetric mode of disturbance in which the critical field occurs at the maxi-
mum in a plot of potential difference ws. pressure difference. For & > —0-5,
instability arises from an asymmetric disturbance with the critical field occurring
at a bifurcation point in the potential difference/pressure difference plane.
Bifurcations are shown to occur only when the equilibrium profiles of the inter-
faces have extrema at the edges of the channel.

1. Introduction

The failure of the insulation of a dielectric fluid between electrified bodies, due
to the mechanical instability of the fluid produced by the electrical stresses, has
recently been the subject of a number of studies. Taylor & McEwan (1965)
demonstrated such effects, produced under the influence of gravity by an
electrified plate placed above a horizontal conducting free surface. Taylor (1968)
gave an experimental and theoretical study of the instability of neighbouring
soap film membranes when mounted on two circular rings, and Ackerberg (1969)
undertook further mathematical analysis of this problem as formulated by
Taylor. In experiments to verify the linear theory of waves on a conducting
cylindrical column Taylor (1969) studied the bursting of a cylindrical membrane
when stressed by a radial electric field. Studies of the waves on an electrified
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F1aure 1. Schematic diagram of Zuercher’s experiments.

conducting jet have been made by many authors, such as Bassett (1894),
Rayleigh (1879), Melcher (1963) and Crowley (1965). The application of the
theory of such waves to the instability of the cylindrical membrane in Taylor’s
experiments was made by Taylor (1969) and Michael & O’'Neill (1972a), and
good agreement with experimental results was obtained. Two-dimensional
studies of the instability of neighbouring electrified conducting surfaces were
given by Michael & O’Neill (19725).

The motivation and starting point for the further study presented in this paper
is the investigation of Michael, O’Neill & Zuercher (1971), hereafter referred to
as MONZ, in which an experimental and theoretical study was made of the
breakdown of the insulation of a fluid dielectric contained in a circular hole in
a sheet of solid dielectric. The geometry of these experiments conducted by
Zuercher is reproduced in figure 1. A right circular hole in a Perspex plate was
filled with a dielectric fluid and was enclosed above and below by two layers of
water across which a potential difference was applied. The dielectric fluid in the
hole was made neutrally buoyant so that the effect of gravity did not enter the
problem. Observations of the potential difference at which the fluid insulation
becomes unstable were made for a number of holes of different radius-to-depth
ratio. Agreement between the results of these experiments and the mathematical
analysis was good, but small discrepancies in the results could be explained by
the difficulty in controlling exactly the conditions of the experiment. In parti-
cular, it was difficult to ensure that the volume of dielectric fluid used was
exactly the right amount to fill the hole and it was suggested that small
divergences between observational results and theoretical predictions could be
accounted for by small discrepancies in the volume of fluid filling the hole. These
considerations have prompted the present authors to consider whether the
mathematical analysis given in MONZ can be advanced to include calculations
of the instability when the hole is not exactly filled.

In the absence of any gravitational effects, when the hole is underfilled or
overfilled the upper and lower surfaces will be symmetric about the centre-plane,
and when there is no applied field they will evidently be spherical if the effect of
the menisci is taken into account. When an electric field is applied across the hole
it becomes a matter of considerable difficulty to calculate the shape of the inter-
faces. Such a specification can be given in general only in numerical terms, and, if
the problem is conceived in this way, it follows that calculation of the instability
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can be effected only in numerical form. However, the problem can be advanced
theoretically in a more satisfactory way when the hole radius is large in relation
to its depth by making use of the approximation given by Taylor (1968) in his
study of the instability of electrified soap films suspended on two similarly
situated circular rings. Denoting the distance between the rings by 24, the radius
of the rings by a, and the radius of curvature of the membranes in the absence of
an electric field by R, Taylor considered the situation in which 2 € @ € R, and
he demonstrated that very good agreement with experiment can be obtained by
approximating the field strength by the field between parallel planes separated
by the local separation of the membranes. This formulation leads to the two-
point boundary-value problem in which the profile of the membrane satisfies
the equations

d?y 1dy I
dx® xdx > y )

dylde=0 (@=0), y=1 (x=1).

(1)

Here « is made dimensionless on the scale a, ¢ is dimensionless on the scale £, and
o = 2a?[Rh and B = KVi%a?[16aTh3 are two constants which represent, in
dimensionless form, respectively, the defect in the static pressure in between the
two membranes compared with the pressure outside, and the level of the potential
difference 2V, applied between the membranes. 7' is the one-sided surface tension
and K the dielectric constant of the medium between the membranes.

We may apply the formulation (1) also to Zuercher’s experiments when the
hole radius is large compared with the depth if we replace 7' by 37 since the
surfaces under stress are not now membranes, but the form of solution in this
case is different. In Taylor’s work it was assumed that a change in the equilibrium
configuration of the membranes occurs with the application of the field under
conditions in which the pressure difference, measured by «, remains invariant.
The obvious instance of this is when the rings are open-sided, with @ = 0, which
was the condition of Taylor's experiments. Thus solutions of (1) were sought by
Taylor and Ackerberg at constant «, and transition to instability was found at
a maximum value of § subject to this condition. When an incompressible
dielectric fluid fills a circular hole with closed sides, the solution of the mathe-
matical problem (1) must take a different form. Clearly in this case the change
in the equilibrium configuration with the application of an electric field must
be accompanied by a change in pressure in such a way that the volume of fluid
occupying the hole remains constant. The requirement in this case is therefore to
obtain solutions of (1) in which « and g vary in such a way as to maintain the
volume of fluid constant. The most convenient way of representing such solutions
is to plot the locus of («, #) in the «, £ plane for each prescribed volume fraction.

It may benoted here that constant-volume conditions are not confined to liquid
insulators. In the experiments of Taylor (1969), for example, it was demonstrated
that the bursting by electrification of a cylindrical membrane enclosing an air
column which is closed at the ends takes place through incompressible modes of
instability. In such cases the level of the surface stresses produced by electrifica-
tion in the critical state is too low to have any appreciable effect in expanding or
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compressing the enclosed air. Thus a simple counterpart of the conditions of
Zuercher’s experiments could be realized by an arrangement in which a box is
constructed with insulating sides and conducting plane surfaces above and below
in which two circular holes are made centrally. With two soap film membranes
spread over the holes to enclose the air in the box and a means of setting the
pressure inside to vary the volume of air in the box, the conditions of Zuercher’s
experiment can be simulated.

In seeking to connect the results of an analysis of this kind with the results of
the small perturbation analysis in MONZ several points need elucidation. In the
first place the analysis in MONZ was given in two parts, an approximate and an
exact theory, the approximate theory being one in which the conditions at the
side of the hole are not exactly satisfied. The difference between the results of
these two theories diminishes as the hole radius gets larger. It is to be expected
that the Taylor analysis will be valid in the limit of very large holes, and it is
therefore appropriate to make comparisons with the results of the approximate
theory, which are given in a simple explicit form. A second point arising in the
comparison is that in MONZ two forms of unstable modes were shown to be
relevant, sausage and kink modes, these being respectively small perturbations
of the hole surface symmetric and antisymmetric about the centre-plane. The
Taylor formulation has been given only for sausage-type equilibria which are
also symmetric about the axis of the hole. It may be asked whether there is any
counterpart to kink modes in the Taylor formulation. Such modes imply equi-
libria which are not symmetric about the centre-plane and it can easily be seen
that they cannot occur. For, if we denote the two surfaces, which may now be of
arbitrary (axisymmetric) shape, by y,(x) and y,(z) the equations for axisym-
metric equilibria may be written as

d?y, 1d?/2__ 48
dx2+§ do a+(3/2"‘3/1)2’
da? " x dx (Y2 —y)*’

with

dy,fdx = dy,/de =0 at =z =0, =0, y,=2 at x=1.
If £ = y; +y, and n = y, —y,, it follows, by adding the equations, that £ = 2k, and
hence that y; = k— 3}y and y, = &+ }5. Therefore no kink-type solutions sym-
metric about the axis will exist. The result is unaltered for modes which are not
axisymmetric, because in this case we require £ to satisfy Laplace’s equation

oE 1o 10
ox?  x 0x % 067 ’

with £ = 2h at = 1 for all values of the polar angle ¢. Hence again £ = 2k. Thus
the Taylor form of analysis can only be associated with sausage mode displace-
ments because the electrical stress at corresponding points on the upper and
lower surfaces is the same, so that the curvature of the surfaces must have the
same value with opposite sign at these points. This is compatible with the
sausage modes of MONZ, where the normal field is even about the mid-plane,
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giving equal stresses on both surfaces, whereas in the kink modes the values of
the perturbation normal stresses at the two surfaces are equal and opposite,
giving different first-order stresses at the two surfaces. This connexion between
the two theories is also confirmed by the form of the dispersion relationship for
neutrally stable waves given in MONZ. It was shown that the relationship is

KE?% = 4nkT tanh Rh, for sausage modes, (2a)
KE2 = 4nkT coth Rh, for kink modes, (2b)

where E, = V,/h is the unperturbed field strength and & is the wavenumber. The
Taylor analysis corresponds to the case where kh—0, when (2a) gives rise to
a finite limit k%a? for 28 = KVia?[4nTh®. (In MONZ the symbol B was used
instead of a and it was seen that kR could take finite and discrete values.) In
(2b) it is easily seen that there is no finite limit for g.

The primary interest in both forms of the theory is to find the mode of break-
down which has the lowest level of applied potential V. In the MONZ analysis
of a fully filled hole it was shown that for small holes this mode is an axisymmetric
kink mode, and for a large hole it is a non-axisymmetric sausage mode. From the
foregoing discussion we should expect to be able to apply the Taylor form of
analysis to obtain the lowest mode for partially filled large holes, but a complica-
tion arises because by implication from the MONZ result it is to be expected that
this will be a non-axisymmetric mode. The equations for non-axisymmetric
equilibrium using the Taylor formulation will give rise to the boundary-value
problem, which follows by extension from (1);

A Tl A T A 4 S
3x2+x 3x+x2 002 oc+y2 (y 2 0), @)
with y= 1 when z=1 for O < 0 < 2.

Non-axisymmetric solutions of this boundary-value problem are difficult to
obtain, and in order to examine the connexion between axisymmetric and non-
axisymmetricsolutionsin a slightly easier context, it was decided to make a study
in the first place of the corresponding two-dimensional problem in which the hole
becomes a rectangular channel. This problem has the advantage of not intro-
ducing a second independent variable for asymmetric modes. Also, the counter-
part of the Taylor theory for constant o in the two-dimensional problem has
already been given by Michael & O’Neill (1972b), and it has the further advantage
of giving solutions in terms of tabulated elliptic integrals.

Our discussion of the problem will therefore be presented in two parts. The
first part, which takes up the remainder of this paper, gives a complete account
of the counterparts of the MONZ and Taylor theories in the two-dimensional
case, where a comprehensive analytical approach to the problem allows the
connexion between the two theories for large holes filled with incompressible
non-conducting fluid to be made clear. In a second paper we shall give an
account of the results which are obtainable for a circular hole using the Taylor
theory and the connexion between these results and those of the theory given
previously in MONZ. Here, for the most part, a numerical study of the problem
has had to be carried out.
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2. Small perturbation theory for a two-dimensional hole

We begin our analysis of the breakdown of stability in a two-dimensional hole
by formulating the counterpart of the linear theory given in MONZ for a circular
hole.

Insulating fluid now fills an infinitely long channel of depth 2k and width 2a
bounded by semi-infinite sheets of solid dielectric. There are plane interfaces at
y = +h, |z| < a, between the insulating fluid and conducting fluid above and
below the sheets. If {(x) denotes the y displacement of the interface for neutrally
stable small two-dimensional disturbances, we distinguish between sausage and
kink modes, in which {(h) = —{(—h) and {(h) = + {(—h) respectively. It is
assumed that the edges of the channel || = a, y = + h are sharp. In this case
with the insulating fluid wetting the sides of the channel up to the edges, the fluid
surface will be suspended from the sharp edges at an angle of inclination which
may take any value depending on the volume of the insulating fluid. Thus { = 0
at the two ends of the interfaces at x = + a. As a counterpart of axisymmetric
and non-axisymmetric modes for a circular hole we also distinguish between
modes in which { is symmetric or antisymmetric about the y axis. For
antisymmetric modes {,ocsink,x, where k, = nwfa, n=1,2,3,..., and for
symmetric modes §, oc cos k, z, with &k, = (n + %) 7m/a. The electrostatic potential
ir of the perturbation satisfies Laplace’s equation and the boundary conditions
¥+ E,¢ =0 at y = + h, where £ is the applied field in the y direction across
the hole. In a simplified theory, in which ¥ is made zero at |z| = a, the field in
the hole is not coupled to the field outside it, and for anti-symmetric sausage
modes, y will have the form y,,, where

Xn = d,sinhk, ysink,x,

with A, =—Ey¢,[sinhk h.
The normal stress condition at y = h then gives
¢ _KEy oy
dz® 4w oy’
so that KE:2h[4#nT = k, htanhk, b, (4)

where K is the dielectric constant of the fluid in the hole and 7 is the surface
tension. The lowest field strength E, which will give instability is given from (4)
by the lowest value of k,,, i.e. k; = m[a; this we shall refer to as the S1 mode. In
the case of kink modes, in which y is an even function of y, the dispersion relation
corresponding to (4) is now

KE3hjanT = k, hcothk, h. (5)

For a given value of &, , the sausage mode instability always appears at a lower
value of E,, but the symmetric sausage modes cannot appear because they
each result in a change in the volume of fluid filling the hole. Hence §1 is the
first sausage mode of instability. Symmetric kink modes can occur with
k, = (n+%)mfa, and the lowest kink mode, which we denote by A0, is obtained
from (5) with kg = 77/2a. For small hfa, the sausage mode S1 becomes unstable
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first with increasing E,, while forlarge 4/a, the kink mode K 0is the most unstable.
The transition in unstable modes occurs when kfa ~ 0-5.

These conclusions are based on the assumption that, in the state of marginal
stability, no change in static pressure inside the fluid dielectric occurs relative
to the outer conducting fluids. It is of interest to note in connexion with the
Taylor approximations given later that a relaxation of this condition can give
rise to a form of symmetric sausage mode. An account of such modes for a circular
hole is given by Michael & O’Neill in an appendix to part 2 of this work. In the
plane geometry an approximate representation of such a symmetric mode may
be obtained by writing { = A(cos kx — cos ka), where 4 is a small amplitude. This
will satisfy the condition { =0 at |z| =a. The constant-volume condition
necessary for a sausage mode, which is

f”gd;«:o,
0

requires that tan ke = ka. The lowest value of k occurs when ka = 4-49. For such
a mode we have an electrostatic potential of the form

_ sinh ky Y
X_—A:E"si—nB—HzCOSkx—EoﬁcOSka}’ (6)

and it may be seen that the extra term in (6) gives rise to an extra constant term
in the first-order electric stress at y = &, which is now

KE? cos ka
47 o

{k coth kh cos kx —

The dispersion relation (4) follows as previously, using the first term. The second
term illustrates that such a mode can arise only when there is a small first-order
increase dp in the static pressure inside the channel, this being given by

op = — (KE}Al4mh) coska. (7)

The critical value of E, predicted by this approximation is given by (4) with
ka = 4-49. For a given channel, this is higher than the value for an S1 mode, in
which ke = 7. Provided that these represent good approximations, this sym-
metric sausage mode should not enter into any correlation of theory with experi-
mental observations of instability. A reservation concerning this mode is that
from (6) it does not satisfy the condition y = 0 at |#| = a, |y| < k as do previous
modes. However, in the limiting case £k — 0, which connects up with the Taylor
approximation, this condition is then satisfied.

We can also consider an approximation to a kink mode with this form of ¢, in
this case without restriction on the value of k. The potential y now has the form

cosh ky

X = —AEO{COS kxm

—cos ka} .

The additional term in y is a constant, and gives no additional stress, no change
in static pressure and no change in the dispersion relation. Again, this form of
solution does not make y = 0 when |z| = a, |y| < &, except in the limit kh— 0.



296 D. H. Michael, J. Norbury and M. E. O'Neill

In so far as both these approximate solutions are unable to satisfy continuity
conditions at the sides |x| = a, |y| < h, they cannot be expected to give accurate
values for the critical field E,. But they are of value in showing that changes in
internal pressure are associated with symmetric sausage modes, but not with
symmetric kink modes. A full solution for these modes incorporating continuity
conditions at the sides has been given by Miss A.E. Latham (1973, private
communication) and will not be pursued further here.

A final point concerning this form of analysis is that we have assumed a two-
dimensional form of perturbation in which ¢ and y are independent of the
co-ordinate z along the channel. It can easily be seen that a simple form of
Squires’ theorem applies in this case in the sense that, if { is taken to be of the
form ¢ = 5% kxSi% mz, the critical field strengths are given by either (4) or (5)
with k replaced by the larger value (k2-+m?)t. Since the critical values of E,
increase with increasing & we conclude that a two-dimensional form of dis-
turbance will yield the first point of instability. This is confirmed by the work of
Miss A.E. Latham when kfa < 1. It has also been demonstrated both experi-
mentally and theoretically that the two-dimensional axisymmetric disturbance
is more unstable than a three-dimensional disturbance in the analogous problem
of the bursting of a charged cylindrical film. The experimental work of
Taylor (1969) and the subsequent theoretical work of Michael & O’Neill
(1972a) show that, for long films, it is the two-dimensional varicose mode
which first becomes unstable.

The analysis described in this section pertains only to the case of a fully filled
channel, for which the volume excess § = 0. By continuity it is clear that when
8 #+ 0 the system will first become unstable through a two-dimensional disturb-
ance if 8] is sufficiently small. In fact it can be easily verified that this
must also be the case for any & when the conditions for the validity of the
Taylor formulation of the problem, set out in the previous section, are met,
since the first-order change in the surface-tension stress is then always of the
form T(82¢[ox?* + 82¢[022) and the conclusion follows as in the case § = 0.

3. Sausage mode instability}for large holes
In the case of a plane-channel hole it is now appropriate to write the boundary-
value problem (3) as
Py Py B

it o = Ty

ylz) > 0,

with y = 41 at |a] = 1 for all z. The small perturbation analysis of the previous
section has shown that for a fully filled hole the most unstable displacements will
be two-dimensional in the sense that they are independent of z. This will also
be true for partially filled plane holes, in which case the problem reduces to a
search for equilibria y(z) satisfying the conditions

Pylda® = a+ply: (y = 0),}

y=1 when |z|=1. (8)
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In this case & = a?/hR and f = K V3a?/87Th3. This boundary-value problem has
been studied previously by Michael & O’Neill (1972b), under the assumption
that « is constant. Here we seek solutions in which the volume of fluid occupying
the hole is constant. This we measure by defining the excess of fluid occupying
the hole as 26, where +1

o= [ w-na

in dimensionless form. Equation (8) has the advantage compared with (1) of
having elliptic integral solutions in tabulated form. It also has a first integral of
the form (dy/dx)? = f(y), which is of great advantage in yielding a simple
criterion for the bifurcation of the solutions which enables us to ascertain points
where the stability changes. Our primary objective in this work is to obtain the
locus of points in the «, # plane for which solutions of (8) have a prescribed value
of 6.

For the purposes of numerical calculation it is useful to remove one of the
parameters from (8).

If « > 0, we write y = f/a > 0 and x; = atz. Dropping the suffix we then have

Pylda? = 1+y[y?, with y=1 at |z|=0ab
A first integral is #(dy/dx)? = k + y — |y, where « is a constant. Real solutions of
the boundary- value problem must have dy/dxz = 0 at least once in the interval.
Here dy/dx = 0 where y2+ky—7y = 0, which we write as (y—b) (y—c¢) = 0, with
bc=—y <0 and b+c = —«. Taking b > 0, the solutions thus have a single
minimum when y = b for |z| < a?. It also follows from the form of (8) that the
solutions y(z) are symmetric about the ordinate at a stationary point of y(z).
Thus, the minimum value of y{x) must occur at « = 0 and consequently only
solutions of (8) which are even functions of x are possible when a > 0.
Ifa < 0, we write y = — /o > 0 and #, = (—a)tz. We now have
dPyjda® = — 1+y[y,

with Y(dy/dx)? =k—y—yly =y (b—y)(y—c). Now b+c=« and bc =7y > 0.
Assuming b > ¢, it follows that ¢ < y(z) < b, and solutions will have a maximum
at ¥ = b and a minimum at ¥ = ¢. Further, since y(x) > 0in solutions of interest,
and b and ¢ have the same sign, we must have b > ¢ > 0in general. In this case
it is clear that solutions with any number of alternate maxima and minima may
be obtained.

As may be seen in later work described in this paper, the case « < 0is of most
interest, and we continue the analysis for this case. We note that, since dy/dx= +
a function of y, it follows that the solutions y(x) are periodic in = and since
d*y/da? is a function of %2, any solution is symmetric about all ordinates through
the maxima and minima,

A basic half-wavelength A of the solution occurs between y = b and y = ¢, as
shown in figure 2. With y = 1 at the ends of the range, clearly b > 1 > ¢, and three
basic solutions are given by the abscissa ranges AB, BC and AC, the latter being
one wavelength. The entire set of solutions can be obtained by adding an integral
number of complete wavelengths to each of these three basic solutions. A distine-
tion can be noted here between solutions which are symmetric (that is even
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Ficure 2. The solution of (8) when a < 0. The basic interfacial profiles are 4B or BC for
solutions symmetric (even) in 2 and 4C for asymmetric solutions.

functions of 2 about the centre-plane « = 0 of the hole), and those which are
asymmetricin thissense. Evidently, solutions represented by the profiles 4 B, BC
and all profiles obtained from these by adding an integral number of whole wave-
lengths to either will be symmetric profiles. Asymmetric profiles are represented
by any integral number of whole wavelengths.

We also note that, whereas for symmetric profiles the slopes at the two ends
are of the form +m and —m, for asymmetric profiles they are equal. This leads
to a simple criterion, of importance later, for the points at which asymmetric
solutions bifurcate from symmetric solutions. If the bifurcation is smooth this
clearly requires that the slope of the profile at each end shall be zero. The volume
conservation condition is conveniently expressed in the form

1 ot dz
o= L 9
(_a)E x=~(_a)i(y )dy y ( )
with dx/dy determined from the first integral of (8). This integral is in general an

incomplete ellipticintegral. Butin the case of a complete wavelength solution 4C
it becomes a complete elliptic integral, and consequently,

2 (v (y—1)yidy
o= (~a)%fy=c 20b—y)(y—o)}
2(2b)}

A owenon(y (5 ) (5 oo

where  and F denote respectively the elliptic integrals of the first and second
kinds. We also have

H—a)t o
2A—a)t = —d
( ) fz=—(—-z)*dy y

- J\H_mi ytdy
x=—(—a)t {2(b —?/) (?/ - C)}%'

For the whole wavelength solution AC this may also be written as a complete
elliptic integral and takes the form

2(— o)t = 2(2b) B(ym, (1—c/b)b). (12)

(11)
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For the whole wavelength solution the curves § = constant in the «, £ plane
were obtained by the following procedure. Equation (10) may be rewritten,
using (12) and considering § as prescribed, as follows:

2b+2c—3—38 = cF(3m, (1 —cfb)2)[E(sm, (1 —c[b)}). (13)

Values of b > 1 were set, and (13) was used, by interpolation from standard tables
of complete elliptic integrals such as Abramovitz & Stegun (1965), to find corre-
sponding values of ¢ where 0 < ¢ < 1. Thereafter, equation (12) yields the value
of a, and #is then obtained from the equationy = — §fa = be. There is no solution
when b < 1. In the limiting cases when b = 1, the solution 4 B of figure 2 ceases
to exist and the solutions BC and AC coalesce. This represents the bifurcation
of symmetric and asymmetric solutions, which can occur for & < 0, and for which
dy/dz = 0 at the two ends of the range, as was remarked earlier. Also solutions
can exist only when ¢ < 1. Similar remarks apply to the limit in which ¢ = 1, but
clearly solutions will exist in this limit only for § > 0. This procedure enables us
to obtain the whole wavelength loci, labelled A, in figures 3, 5 and 6. A simple
connexion exists between the solutions for one wavelength A and those for any
integral number of wavelengths. The solutions representing nA, n = 2, 3,4, ...,
each require for fixed y that the range of « be increased in the ratio ». Since this
is represented by |z| < (—a)? and the integral for 8 is unchanged, it follows that
o and g are increased in the ratio n2. Hence, the locifor 22, 34, 44, ..., follow from
the A loci by scaling up « and g in the ratios 4, 9, 16, ..., for any given J. The
symmetric loci, involving a non-integral number of wavelengths, are found by
a similar procedure, using in this case tables of values of incomplete integrals
such as Abramovitz & Stegun (1965). These calculations yield the loci labelled
7,8, A+7, A+, 2A+7, 2X + s, ete. in figures 3, 5 and 6, where as a convention for
labelling the different solution profiles, we denote by r and s the profiles of the
form 4B and BC of figure 4. For the profile nA +r we reduce (9) and (11) to the
following:

-3 e (5 (59 2o (7))
oo (2 (55)) o (55| #1600,
o= (5, (5 ) 5o (5

where the argument g of the elliptic integrals is given by sin~1[(b— 1)/(b—¢)]?,
and n = 0,1,2,.... Corresponding equations for the profiles nA+s can be
derived from the above by noting that #A+s=(n+1)A—r, forn=20,1,2,....
Again we consider ¢ as prescribed and consequently the above equations reduce
to the following equation, which is analogous to (13):

(2b+2c— 3 — 45) [nE (7:: (b—;f)%)+E(/L, (b—;—c)%)] )
o Bl )
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Ficure 3. S vs. a for the solutions of (8) when & = 0. The label nA relates to a profile of
n complete wavelengths, nA + 7 relates to a profile of type AB plus n complete wavelengths
and nA + 8 relates to a profile of type BC plus n complete wavelengths.

We solve these equations by setting values of b > 1 and finding the correspond-
ing values of ¢, where 0 < ¢ < 1. The values of « and f are found as before, and
the results are displayed in figures 5 and 6.

Discussion of solutions

Case § = 0. We begin our discussion of the solutions with the case § = 0, which
is of particular interest because it is the case for which we already have instability
criteria, obtained in § 2 directly by a small perturbation analysis. Figure 3 shows
the solutions of (8) in the — «, # plane for 8 = 0. This consists of, first, the solution
y(x) = 1, which results when o + # = 0 and is represented by the straight line OL.
Instability of this profile occurs at points where other equilibria bifurcate from
the straight line. These are obtained by small perturbations of (8). If (e, 8,) is
a point on OL at which a bifurcation occurs, let o« = ay+A;, B = f,+ ¢, and
Y(x) = 1+ (x), where ay+ 5, = 0, and A, ¢, and {;(x) are small perturbations.
The first-order change in (8) yields the linear equation

d28,[da® +m2l, = A, +p,, Wwhere m2=2p,,
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and we require {;(z) = 0 at |z| = 1. Since
Gi(x) = (A, +p,)/m?+ A, cosmz + B, sinmz,

the boundary condition requires that B, sinm = 0. We take the two possibilities
in turn.
(i) If sinm = 0, the first non-zero solution is m = 7. Then

& = (A +144) (289) 1 (1 + cos x) + By sin 7.

The conservation of volume requires that

+1
dx =0,
1

so that A; + %, = 0 and §; = B,sinnz. This gives the first bifurcation from OL,
occurring where 24, = — 2a, = 72, at the point # in figure 3. To obtain the slope
of the bifurcation at F it is necessary to go to the second- and third-order terms,
which can be obtained without difficulty. The second-order solution yields the

results &, = (By/2m?) B¥(cos 2mx + cos 7z,

Ay =y =0, Ap+p,=—3p,Bi,

where the suffixes denote the appropriate orders of the terms. The third-order
solution provides the values of A, and u, separately. We find that A, = 4725%
and g, = —1272B2. Thus, the bifurcation occurs at the angle 6 with the —a axis,
where 0 = tan—15, and is also one-sided and below the line OL. The fact that
A; = u, = 0 and the bifurcation only occurs below the line OL can also be proved
by expanding the elliptic integral form of the exact solution, which is given
by (10) with & = 0, in the neighbourhood of the point F' in figure 3. This is
achieved by setting b = 1+¢ and ¢ = 1—%. We then obtain

oo (2ol 52)

which, on using the expansion of the complete elliptic integrals for small € and ,
yields the result

8 =e+3e2+0(ed),
giving —Bla=y=bc=1—-32+0(e%) < 1,

from which the stated conclusions follow.

(ii) When B, = 0, {; = (A;+ ;) (28,)"1{1 — cos mx/cos m} and the volume con-
servation condition then requires that tanm = m. The first root of this equation
is m =~ 4-49, which gives the bifurcation point ¢/, where g, = —a, =~ 10-08.
Second-order analysis in this case shows that 524, + ¢, = 0. In this case one of the
first-order coefficients A; or #; must be assigned to set the scale of the first-order
solution and since the scaling can be reversed in sign, this suggests that the
symmetric bifurcation points on the line a + £ = 0 for § = 0 are two-sided and
consequently the loci of symmetric solutions can be continued above the line
o+ 8 = 0in figure 3. The fact that bifurcation occurs above and below the line OL
for profile types A + sand A + rrespectively and the fact that A; # p, & 0although
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the slope of the bifurcation curve is the same as in type (i) can be deduced by
expanding the exact solution about the point ¢ in figure 3. We again write
b =1+4¢€and ¢ = 1—7 in the equations for the profiles and expand the elliptic
integrals up to second order in € and 7. Then, on considering — ffa = y = bc, as
in type (i), to see when y = 1+e—n—ey 2 1, we find that ¢ < 9 for the solution
A+r,implying that y < 1, so that this solution bifurcates from thelinea+4 = 0
from below while for the solution A+s, € > 9, so that v > 1 and hence the
bifurcation from « + £ = 0 occurs from above.

Such bifurcation points however have no great physical significance as they
do not determine the first onset of instability when § = 0, and we have not
pursued the determination of the A + s curve above the line OL. But the bifurca-
tion branch G in figure 3 corresponding to the A +r curve for which A; > 0 and
M3 < 0 has been calculated and is included in the results displayed in figures 5
and 6, since it is of value in correlating the loci for § = 0 with those for & & 0.
The two bifurcations (i) and (ii) are the first two bifurcations on OL, and they
correspond exactly to the sausage modes given by (4) in the limit of large holes,
when kh— 0, with ka = 7 and 4-49 respectively.

The loci of bifurcated solutions can be followed in the «, £ plane by the direct
calculation procedures previously described. In figure 3 they are continued down
to the £ = 0 axis. The limiting form of the solutions when -0 can easily be
deduced. When £ is small the last term in (8) will only become significant when
y becomes very small. It follows that the limiting solutions are sections of
parabolas satisfying the equation d2?y/dxz? = «, one parabola joining with another
only at a point of discontinuity of slope when y = 0. By applying the volume
conservation condition in the limit we are able to obtain simply the value of & at
which these locireach the axis # = 0for any given 6. For example, the bifurcating
curves at # and G for § = 0 reach the axis at M and N, where « = —3 and — 6,
respectively. # M is clearly a line of asymmetric whole wavelength solutions,
whilst GV represents symmetric solutions. The limiting solutions y(z) at M and N
are illustrated in figure 4.

Case § &= 0. The pattern of solutions in the «, # plane for § = 0, apart from
indicating that instability is associated with bifurcation in the «, # plane, does
not advance our knowledge of the stability of fully filled large plane holes,
because criteria for instability were obtained in §2 by direct perturbation
methods. However, the former method may be followed through for cases in
which & # 0, to yield stability criteria which could only be obtained by entirely
numerical calculations of stability using the direct perturbation method of §2.
In figures 5 and 6 we give results for the loci of equilibria for values of § less than
and greater than zero, respectively, with the case § = 0 added in each figure for
comparison purposes.

For the limiting solutions as £ - 0 simple calculations show that for asymmetric
solutions of the form M, & = —$(8+ 2), with the cusp occurring at the point
%y, where 2% = (36 + 2)/3(8 + 2). For symmetric solutions of the form N we find
o = —6(1+9). For the value 6 = — %, 2y = 0, and M corresponds to a symmetric
solution and coincides with V. For § < — £ no solution of the form # exists. In
this case it can be seen that the point M becomes a second bifurcation point occur-
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r=1 y=1

M

),=0 I T 1
-1 ~ly3 0 +1
x

F1GUurE 4. The limiting forms of the profiles for § = 0 as £ - 0 along the
curves FM and GN of figure 3.

ring for # > 0, at which the A solution line F M/ rejoins the symmetric solution
A+r.

The study of these solutions down to the limit # = 0 is of interest in estab-
lishing the complete pattern of solutions to the mathematical problem posed.
However, such solutions near # = 0 will not have any physical validity because
the sharply varying slope near y = 0 violates the physical approximation on
which the formulation of (8) is based.

4. Breakdown of stable equilibria

In the previous section detailed solutions were obtained for the equilibrium of
partially filled two-dimensional large holes when electrically stressed, by use of
the Taylor approximation. From a physical point of view we are interested in
the stability of the equilibrium, and, in particular, the values of # at which stable
equilibrium first fails as £ is raised from zero. Starting from £ = 0, the solutions
r for § > 0, and s for & < 0 represent stable equilibria. As # is raised from zero,
stability of the equilibrium for given & will fail either when a bifurcation point
occurs or when the equilibrium locus attains a local maximum in 4. It can be
seen in figures 5 and 6 that both forms of failure can occur for different values
of 8. When & = 0, the equilibrium first becomes unstable at the bifurcation point
F of figure 3, where the instability is of the S1 type obtainable from the small
perturbation analysis of §2. This type of failure occurs for all § > 0, and for all
negative 6 down to a critical value which by numerical methods we find to be
about — 0-5. For values of § which are such that —% < & < — }, ourresults suggest
that stable equilibrium remains until # reaches a maximum, which oceurs before
a bifurcation, and that the stability fails at the maximum point. This happens
for example when & = — 0-67, as illustrated in figure 7. The lower limit to the
range of permissible negative values of & is imposed by the requirement that
y = 01in the absence of the electric field. The instability of the system represents
in practice a rupture of the fluid insulation of the hole, and the two forms of
instability represent different forms of rupture. The bifurcation-point instability
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Ficure 5. f vs. a for the solutions of (8) when & = 0-4.
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Fiaure 6. f vs. o for the solutions of (8) when & = —0-2.
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Ficure 7. f vs. o for the solutions of (8) when § = 0, —0-2, —0-4 and —0-67.

S1 represents an off-centre rupture of the dielectric fluid and is analogous to the
form observed in the experiments of Zuercher for large circular holes, and has
up to now been the type of instability associated with large holes. The instability
oceurring at a maximum of # is symmetric and one in which the rupture occurs
at the centre of the hole. Our results indicate that this latter type of instability
never occurs when & = 0 but will occur for sufficiently large deficiencies in the
volume of insulating fluid filling the hole. This may well be expected since in such
cases the layer of fluid becomes increasingly thin at the centre as & decreases.
In fact, when 6 = — 0-5, the thickness of the layer at the centre in the absence of
the field is 1-25h.

The result of most practical interest is the variation of the critical value of £,
denoted by #*, at which instability first occurs, as a function of 8. For the range
of values of § in which §* occurs at a bifurcation in the «, § plane, a direct repre-
sentation of the critical point can be obtained. When 6 > 0, ¢ = 1 at this point,
and if ¢ = a* and b = b* at this point, (12) and (13) become

2(—a*)t = 2(26%) B(Lm, (1— 1/b*)3) (14)
and 2% —1— 38 = FQm, (1= 1/b¥))[EQm, (1 - 1/b¥)3). (15)

20 FLM 66
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Ficure 8. A plot of g%, the value of f in the marginal state of equilibrium, for varying §.

Pmsx denotes the maximum of the a, £ locus for symmetric profiles, and f,;; denotes the

value of f at the first bifurcation of the symmetric and asymmetric loci. The critical value
* = e fOor & < —0-5 approximately, and f* = f,, for § > —0-5.

Equation (15) can be solved for b*. Hence a* is obtained from (14), and
B* = —a*b*. The function F(3m,(1—1/b*)})[E(}m, (1—1/b*)}) increases mono-
tonically from 1 to + oo logarithmically as b* increases from 1 to +o0. It follows
from (15) that for & > 0 there is just one such bifurcation point of solution r as
illustrated in figure 5.

When 6 < 0, bifurcation of the solution s occurs where b = 1. Equation
(15) is then replaced by

20% —1— 30 = c*F(§m, (1 —c*)})[E(3m, (1 —c*)}), (16)
which is solved for c¢*, where 0 < ¢* < 1. It follows from (16) that when
0 > & > — % there is again only one solution for ¢*. When § = — £ there is a solu-

tion where F(im, (1 —c*)})[E(3m, (1 —c*)¥) = 2, for which 0 < ¢* < 1. In addition
¢* = 0 is a solution giving £* = 0. This is the limiting form of a second solution
which occurs for values of § just less than — 2, and is consistent with the behaviour
remarked on earlier, that when & < — £ the points represented by M for § = 0in
figure 3 become bifurcation points of the solutions A and A-+s.

At § = §,, where —0-69 > §, > — 0-70, the points of bifurcation into s and A,
and A and A+ coalesce, and for § < §, these bifurcations no longer exist.
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the exact solution of the linearized perturbation equations when § = 0 by Miss A. E. Latham
(1973 ; private communication); , determined from the present theory.

The determination of the values of #* occurring where £ has a maximum value
does not appear to yield to a simple direct analysis of the above type. Maximum
points have been obtained in this case by direct evaluation of the s locus for
values of § down to the lower limit § = —#% (where b* = 0) in the neighbourhood
of maximum points. Numerical evaluation shows that the critical value of § at
which transition in #* from a maximum to a bifurcation type occurs is given by
0* = —0-5. The values of #* are plotted against § in figure 8.

Itisalso of interest to correlate these results with those obtained from the small
perturbation analysis of §2, and figure 9 shows the critical values of
A* = 27hT|KV? as a function of a/k when & =0 for the S1 mode. Since
A* = (48*)1(afk)?, we are able to add parabolas obtained here for different
values of 8 using the value §* corresponding to each 4. These curves will clearly
provide a valid extension of the results of the analysis of §2 when k/a < 1 and
d+0.

20-2
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5. Conclusion

In the preceding sections we have demonstrated how the nature of the stability
of a fixed volume of incompressible dielectric fluid, which fills a channel between
solid dielectric sheets and which is stressed by an electric field applied between the
interfaces of the dielectric fluid and conducting fluids, is elucidated by a study of
the general problem when the channel is not exactly filled by the dielectric fluid.

In the case when the width of the channel is large compared with its depth, we
have shown how an asymmetric rupture of the dielectric fluid results when the
curves of potential difference vs. pressure difference across the interfaces for
symmetric and asymmetric equilibrium profiles of the interfaces bifurcate. This
is the mechanism for dielectric breakdown though electrocapillary instability
except when the volume of the fluid is less than about half the volume of the
channel per unit length, and in such cases, the rupture of the dielectric fluid
occurs at the centre and the critical field then corresponds to the maximum in
the curve of potential difference vs. pressure difference for symmetric equilibrium
profiles. It has also been established that bifurcations only occur when the
equilibrium profiles of the interfaces have extrema at the edges of the channel.

The work described in this paper was completed while one of the authors
(M. E. O’N.) was visiting the Department of Mathematics, University of Toronto,
and he gratefully acknowledges support from the National Research Council of
Canada.
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